Adaptive Controller Design for Tracking and Disturbance Attenuation in Parametric Strict-Feedback Nonlinear Systems

نویسندگان

  • Zigang Pan
  • Tamer Başar
چکیده

The authors develop a systematic procedure for obtaining robust adaptive controllers that achieve asymptotic tracking and disturbance attenuation for a class of nonlinear systems that are described in the parametric strict-feedback form and are subject to additional exogenous disturbance inputs. Their approach to adaptive control is performance-based, where the objective for the controller design is not only to find an adaptive controller, but also to construct an appropriate cost functional, compatible with desired asymptotic tracking and disturbance attenuation specifications, with respect to which the adaptive controller is “worst case optimal.” In this respect, they also depart from the standard worst case (robust) controller design paradigm where the performance index is fixed priori. Three main ingredients of the paper are the backstepping methodology, worst case identification schemes, and singular perturbations analysis. Under full state measurements, closedform expressions have been obtained for an adaptive controller and the corresponding value function, where the latter satisfies a Hamilton–Jacobi–Isaacs equation (or inequality) associated with the underlying cost function, thereby leading to satisfaction of a dissipation inequality for the former. An important by-product of the analysis is the finding that the adaptive controllers that meet the dual specifications of asymptotic tracking and disturbance attenuation are generally not certainty-equivalent, but are asymptotically so as the measure quantifying the designer’s confidence in the parameter estimate goes to infinity. To illustrate the main results, the authors include a numerical example involving a third-order system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS

In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...

متن کامل

ADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS

This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...

متن کامل

Adaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay

In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control  method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...

متن کامل

Adaptive Approximation-Based Control for Uncertain Nonlinear Systems With Unknown Dead-Zone Using Minimal Learning Parameter Algorithm

This paper proposes an adaptive approximation-based controller for uncertain strict-feedback nonlinear systems with unknown dead-zone nonlinearity. Dead-zone constraint is represented as a combination of a linear system with a disturbance-like term. This work invokes neural networks (NNs) as a linear-in-parameter approximator to model uncertain nonlinear functions that appear in virtual and act...

متن کامل

Adaptive Passivity-based Nonlinear Control for Strict Feedback Form Systems

This paper presents a tracking algorithm for the adaptive control of nonlinear dynamic systems represented in Strict Feedback Form with parametric uncertainty. The construction of the stabilizing algorithm is given using Passivity-based arguments that result in an Adaptive Passivity-Based Controller (APBC). This paper also shows a comparison with a controller designed via Adaptive Backstepping ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996